Knowledge graph embedding methods for entity alignment: experimental review

نویسندگان

چکیده

Abstract In recent years, we have witnessed the proliferation of knowledge graphs (KG) in various domains, aiming to support applications like question answering, recommendations, etc. A frequent task when integrating from different KGs is find which subgraphs refer same real-world entity, a largely known as Entity Alignment. Recently, embedding methods been used for entity alignment tasks, that learn vector-space representation entities preserves their similarity original KGs. wide variety supervised, unsupervised, and semi-supervised proposed exploit both factual (attribute based) structural information (relation Still, quantitative assessment strengths weaknesses according performance metrics KG characteristics missing literature. this work, conduct first meta-level analysis popular alignment, based on statistically sound methodology. Our reveals significant correlations with meta-features extracted by rank them way effectiveness across all our testbed. Finally, study interesting trade-offs terms methods’ efficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semantically Smooth Knowledge Graph Embedding

This paper considers the problem of embedding Knowledge Graphs (KGs) consisting of entities and relations into lowdimensional vector spaces. Most of the existing methods perform this task based solely on observed facts. The only requirement is that the learned embeddings should be compatible within each individual fact. In this paper, aiming at further discovering the intrinsic geometric struct...

متن کامل

ProjE: Embedding Projection for Knowledge Graph Completion

With the large volume of new information created every day, determining the validity of information in a knowledge graph and filling in its missing parts are crucial tasks for many researchers and practitioners. To address this challenge, a number of knowledge graph completion methods have been developed using low-dimensional graph embeddings. Although researchers continue to improve these mode...

متن کامل

Locally Adaptive Translation for Knowledge Graph Embedding

Knowledge graph embedding aims to represent entities and relations in a large-scale knowledge graph as elements in a continuous vector space. Existing methods, e.g., TransE and TransH, learn embedding representation by defining a global margin-based loss function over the data. However, the optimal loss function is determined during experiments whose parameters are examined among a closed set o...

متن کامل

Context-Dependent Knowledge Graph Embedding

We consider the problem of embedding knowledge graphs (KGs) into continuous vector spaces. Existing methods can only deal with explicit relationships within each triple, i.e., local connectivity patterns, but cannot handle implicit relationships across different triples, i.e., contextual connectivity patterns. This paper proposes context-dependent KG embedding, a twostage scheme that takes into...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Data Mining and Knowledge Discovery

سال: 2023

ISSN: ['1573-756X', '1384-5810']

DOI: https://doi.org/10.1007/s10618-023-00941-9